Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 6(1): 1008, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794132

RESUMO

Phagosome maturation is critical for immune defense, defining whether ingested material is destroyed or converted into antigens. Sec22b regulates phagosome maturation, yet how has remained unclear. Here we show Sec22b tethers endoplasmic reticulum-phagosome membrane contact sites (MCS) independently of the known tether STIM1. Sec22b knockdown increases calcium signaling, phagolysosome fusion and antigen degradation and alters phagosomal phospholipids PI(3)P, PS and PI(4)P. Levels of PI(4)P, a lysosome docking lipid, are rescued by Sec22b re-expression and by expression of the artificial tether MAPPER but not the MCS-disrupting mutant Sec22b-P33. Moreover, Sec22b co-precipitates with the PS/PI(4)P exchange protein ORP8. Wild-type, but not mutant ORP8 rescues phagosomal PI(4)P and reduces antigen degradation. Sec22b, MAPPER and ORP8 but not P33 or mutant-ORP8 restores phagolysosome fusion in knockdown cells. These findings clarify an alternative mechanism through which Sec22b controls phagosome maturation and beg a reassessment of the relative contribution of Sec22b-mediated fusion versus tethering to phagosome biology.


Assuntos
Fagocitose , Fagossomos , Fagossomos/metabolismo , Fagocitose/fisiologia , Retículo Endoplasmático/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo
2.
Eur Radiol ; 31(10): 7476-7483, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33791818

RESUMO

OBJECTIVES: Interventional radiology procedures expose individuals to ionizing radiation. However, existing dosimetry methods do not provide the dose effectively absorbed to the skin, and do not consider the patient's individual response to irradiation. To resolve this lack of dosimetry data, we developed a new external irradiation biodosimetry device, DosiKit, based on the dose-dependent relationship between irradiation dose and radiation-induced H2AX protein phosphorylation in hair follicles. This new biological method was tested in Clermont-Ferrand University Hospital to evaluate the assay performances in the medical field and to estimate DosiKit sensitivity threshold. METHODS: DosiKit was tested over 95 patients treated with neuroradiological interventions. For each intervention, lithium fluoride thermoluminescent dosimeters (TLD) were used to measure total dose received at each hair collection point (lateral and occipital skull areas), and conventional indirect dosimetry parameters were collected with a Dosimetry Archiving and Communication System (DACS). RESULTS: Quantitative measurement of radiation-induced H2AX protein phosphorylation was performed on 174 hair samples before and after the radiation exposure and 105 samples showed a notable induction of gammaH2AX protein after the radiological procedure. According to a statistical analysis, the threshold sensitivity of the DosiKit immunoassay was estimated around 700 mGy. CONCLUSIONS: With this study, we showed that DosiKit provides a useful way for mapping the actually absorbed doses, allowing to identify patients overexposed in interventional radiology procedures, and thus for anticipating risk of developing dermatitis. KEY POINTS: • DosiKit is a new external irradiation biodosimetry device, based on the dose-dependent relationship between irradiation dose and radiation-induced H2AX protein phosphorylation in hair follicles. • DosiKit was tested over 95 patients treated with neuroradiological interventions. • The threshold sensitivity of the DosiKit immunoassay was estimated around 700 mGy and DosiKit provides a useful way for mapping the actually absorbed doses.


Assuntos
Dermatite , Exposição à Radiação , Humanos , Imunoensaio , Doses de Radiação , Radiologia Intervencionista , Radiometria
3.
Radiat Res ; 190(5): 473-482, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30074847

RESUMO

DosiKit is a field radiation biodosimetry immunoassay for fast triage of individuals exposed to external total-body or partial-body irradiation (TBI or PBI). Assay proof-of-concept based on γ-H2AX analysis of human blood samples has been previously described as a promising tool for rapid assessment of TBI. Here, we report on the performance of the assay for PBI based on an analysis of hair follicles irradiated with a 137Cs gamma-ray source, at doses ranging from 0 to 20 Gy and dose rates ranging from ∼0.8 to ∼3 Gy/min. First, we show that the DosiKit protocol allows extraction and analysis of hair follicle proteins. Next, we show that irradiated hair follicles trigger a DNA damage response by inducing dose-dependent γ-H2AX expression. Since γ-H2AX expression strongly decreases 2 to 4 h postirradiation, due to DNA repair, we hypothesized that an antibody targeting the S*/T*Q domains, phosphorylated by ATM for DNA repair activation (pSQTQ), would extend the postirradiation dosimetry time window. DosiKit analysis of pSQTQ in ex vivo irradiated cynomolgus monkey skin explants shows that these sequences are phosphorylated in a dose-dependent manner up to 8 h postirradiation, and that statistically different ranges of external radiation exposure can be distinguished (0-2 Gy, 5-10 Gy, 20 Gy). Since the DosiKit protocol is intended to be used on both blood and hair samples, we also show that SQTQ sequences are phosphorylated dose-dependently in human blood, allowing samples to be classified into three radiation dose ranges (0-0.1 Gy, 0.5-3 Gy and 5-8 Gy). In conclusion, radiation biodosimetry can be performed on both blood and hair samples up to 8 h after exposure using the DosiKit protocol, allowing the concomitant characterization of TBI and PBI for fast and efficient radiological crisis management.


Assuntos
Sangue/efeitos da radiação , Cabelo/metabolismo , Imunoensaio/métodos , Doses de Radiação , Animais , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Relação Dose-Resposta à Radiação , Feminino , Histonas/metabolismo , Humanos , Macaca fascicularis , Masculino , Fosforilação , Estudo de Prova de Conceito , Irradiação Corporal Total
4.
Radiat Res ; 190(2): 176-185, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29215325

RESUMO

DosiKit is a new field-radiation biodosimetry immunoassay for rapid triage of individuals exposed to external total-body irradiation. Here, we report on the validation of this immunoassay in human blood cell extracts 0.5 h after in vitro exposure to 137Cs gamma rays, using γ-H2AX analysis. First, calibration curves were established for five donors at doses ranging from 0 to 10 Gy and dose rates ranging from ∼0.8 to ∼3 Gy/min. The calibration curves, together with a γ-H2AX peptide scale, enabled the definition of inter-experimental correction factors. Using previously calculated correction factors, blind dose estimations were performed at 0.5 h postirradiation, and DosiKit performance was compared against concomitant dicentric chromosome assay (DCA), the current gold standard for external irradiation biodosimetry. A prototype was then assembled and field tested. We show that, despite significant inter-individual variations, DosiKit can estimate total-body irradiation doses from 0.5 to 10 Gy with a strong linear dose-dependent signal and can be used to classify potentially exposed individuals into three dose ranges: below 2 Gy, between 2 and 5 Gy and above 5 Gy. The entire protocol can be performed in 45 min, from sampling to dose estimation, with a new patient triaged every 10 min. While DCA enables precise measurement of doses below 5 Gy, it is a long and difficult method. In contrast, DosiKit is a quick test that can be performed directly in the field by operational staff with minimal training, and is relevant for early field triage and identification of individuals most likely to experience acute radiation syndrome. These findings suggest that DosiKit and DCA are complementary and should be combined for triage in a mass scale event. While the proof-of-concept reported here validates the use of DosiKit at 0.5 h postirradiation, further studies are needed to calibrate and evaluate the performance of the DosiKit assay at longer times after irradiation.


Assuntos
Imunoensaio/instrumentação , Radiometria/instrumentação , Adulto , Sangue/efeitos da radiação , Calibragem , Feminino , Humanos , Cinética , Masculino , Pessoa de Meia-Idade , Fatores de Tempo
5.
Nat Commun ; 8(1): 1852, 2017 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-29176619

RESUMO

Antigen cross-presentation by dendritic cells (DC) stimulates cytotoxic T cell activation to promote immunity to intracellular pathogens, viruses and cancer. Phagocytosed antigens generate potent T cell responses, but the signalling and trafficking pathways regulating their cross-presentation are unclear. Here, we show that ablation of the store-operated-Ca2+-entry regulator STIM1 in mouse myeloid cells impairs cross-presentation and DC migration in vivo and in vitro. Stim1 ablation reduces Ca2+ signals, cross-presentation, and chemotaxis in mouse bone-marrow-derived DCs without altering cell differentiation, maturation or phagocytic capacity. Phagosomal pH homoeostasis and ROS production are unaffected by STIM1 deficiency, but phagosomal proteolysis and leucyl aminopeptidase activity, IRAP recruitment, as well as fusion of phagosomes with endosomes and lysosomes are all impaired. These data suggest that STIM1-dependent Ca2+ signalling promotes the delivery of endolysosomal enzymes to phagosomes to enable efficient cross-presentation.


Assuntos
Apresentação de Antígeno/fisiologia , Células Dendríticas/fisiologia , Fagossomos/fisiologia , Molécula 1 de Interação Estromal/metabolismo , Animais , Cálcio/metabolismo , Movimento Celular/fisiologia , Cistinil Aminopeptidase/metabolismo , Células Dendríticas/imunologia , Retículo Endoplasmático/metabolismo , Concentração de Íons de Hidrogênio , Camundongos Knockout , Fagocitose/fisiologia , Fagossomos/química , Espécies Reativas de Oxigênio/metabolismo , Molécula 1 de Interação Estromal/genética
6.
J Cell Sci ; 127(Pt 19): 4103-9, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25146395

RESUMO

The Arf small G proteins regulate protein and lipid trafficking in eukaryotic cells through a regulated cycle of GTP binding and hydrolysis. In their GTP-bound form, Arf proteins recruit a specific set of protein effectors to the membrane surface. These effectors function in vesicle formation and tethering, non-vesicular lipid transport and cytoskeletal regulation. Beyond fundamental membrane trafficking roles, Arf proteins also regulate mitosis, plasma membrane signaling, cilary trafficking and lipid droplet function. Tight spatial and temporal regulation of the relatively small number of Arf proteins is achieved by their guanine nucleotide-exchange factors (GEFs) and GTPase-activating proteins (GAPs), which catalyze GTP binding and hydrolysis, respectively. A unifying function of Arf proteins, performed in conjunction with their regulators and effectors, is sensing, modulating and transporting the lipids that make up cellular membranes. In this Cell Science at a Glance article and the accompanying poster, we discuss the unique features of Arf small G proteins, their functions in vesicular and lipid trafficking in cells, and how these functions are modulated by their regulators, the GEFs and GAPs. We also discuss how these Arf functions are subverted by human pathogens and disease states.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Animais , Humanos , Transdução de Sinais
7.
J Cell Sci ; 126(Pt 20): 4794-805, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23943872

RESUMO

Lipid droplet metabolism and secretory pathway trafficking both require activation of the Arf1 small G protein. The spatiotemporal regulation of Arf1 activation is mediated by guanine nucleotide exchange factors (GEFs) of the GBF and BIG families, but the mechanisms of their localization to multiple sites within cells are poorly understood. Here we show that GBF1 has a lipid-binding domain (HDS1) immediately downstream of the catalytic Sec7 domain, which mediates association with both lipid droplets and Golgi membranes in cells, and with bilayer liposomes and artificial droplets in vitro. An amphipathic helix within HDS1 is necessary and sufficient for lipid binding, both in vitro and in cells. The HDS1 domain of GBF1 is stably associated with lipid droplets in cells, and the catalytic Sec7 domain inhibits this potent lipid-droplet-binding capacity. Additional sequences upstream of the Sec7 domain-HDS1 tandem are required for localization to Golgi membranes. This mechanism provides insight into crosstalk between lipid droplet function and secretory trafficking.


Assuntos
Complexo de Golgi/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Corpos de Inclusão/metabolismo , Fator 1 de Ribosilação do ADP/genética , Fator 1 de Ribosilação do ADP/metabolismo , Animais , Células COS , Chlorocebus aethiops , Complexo de Golgi/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Células HeLa , Humanos , Corpos de Inclusão/genética , Metabolismo dos Lipídeos , Plasmídeos , Transporte Proteico , Via Secretória , Transfecção
8.
Hum Mol Genet ; 16(22): 2651-8, 2007 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-17597094

RESUMO

Friedreich ataxia, the most common recessive ataxia, is caused by the deficiency of the mitochondrial protein frataxin (Fxn), an iron chaperone involved in the assembly of Fe-S clusters (ISC). In yeast, mitochondria play a central role for all Fe-S proteins, independently of their subcellular localization. In mammalian cells, this central role of mitochondria remains controversial as an independent cytosolic ISC assembly machinery has been suggested. In the present work, we show that three extramitochondrial Fe-S proteins (xanthine oxido-reductase, glutamine phosphoribosylpyrophosphate amidotransferase and Nth1) are affected in Fxn-deleted mouse tissues. Furthermore, we show that Fxn is strictly localized to the mitochondria, excluding the presence of a cytosolic pool of Fxn in normal adult tissues. Together, these results demonstrate that in mammals, Fxn and mitochondria play a cardinal role in the maturation of extramitochondrial Fe-S proteins. The Fe-S scaffold protein IscU progressively decreases in Fxn-deleted tissues, further contributing to the impairment of Fe-S proteins. These results thus provide new cellular pathways that may contribute to molecular mechanisms of the disease.


Assuntos
Ataxia de Friedreich/genética , Proteínas de Ligação ao Ferro/fisiologia , Proteínas Ferro-Enxofre/metabolismo , Ferro/metabolismo , Mitocôndrias/metabolismo , Enxofre/metabolismo , Animais , Citosol/metabolismo , Camundongos , Camundongos Transgênicos , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...